DOI: http://dx.doi.org/10.18782/2320-7051.2610

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **5** (6): 579-584 (2017)

Research Article

Comparison of Silver Nanoparticles and Other Metal Nanoparticles on Postharvest Attributes and Bacterial Load in Cut Roses var. Taj Mahal

Varun Amingad^{1*}, Sreenivas K. N.², Fakrudin B.³ Seetharamu G. K.⁴, Shankarappa T. H.⁵, Sangama⁶ and Venugopalan, R.⁷

¹Ph.D. Scholar, College of Horticulture, University of Horticultural Sciences Campus, Bengaluru-560 065 ²Dean, College of Horticulture, Kolar (University of Horticultural Sciences, Bagalkot)

³ Prof. and Head, Dept. of Biotechnology and Crop Improvement, College of Horticulture, University of Horticultural Sciences Campus, GKVK Post, Bengaluru-560 065

⁴ Prof. and Head, Department of Floriculture and Landscape Architecture, KRC College of Horticulture, Arabhavi ⁵Asst. Prof., College of Horticulture, Kolar (University of Horticultural Sciences, Bagalkot)

⁶Principal Scientist, Division of Postharvest Technology and Agriculture Engineering, ICAR-Indian Institute of Horticultural Research, Bengaluru-89

⁷ Principal Scientist, Division of Economics and Statistics, ICAR-Indian Institute of Horticultural Research, Bengaluru-89 *Corresponding Author E-mail: varun.amingad@gmail.com

Received: 18.02.2017 | Revised: 25.03.2017 | Accepted: 1.04.2017

ABSTRACT

Rose is one of the most sought after cut flowers globally. The naturally short vase life of cut roses is an impediment. Microbial contamination is one of the major reason for abbreviated vase life. In this study, effects of nanoparticle vase holding solutions on water relations and microbial load of rose var. Taj Mahal were evaluated. The present study was carried out at the Postharvest Technology Laboratory, College of Horticulture, Bengaluru. During vase period, water uptake, transpiration loss, water balance and microbial load were measured. Nanosilver solutions were the best in maintaining water relations and inhibiting bacterial proliferation. Flowers were held in 50 ppm nanosilver exhibited the best results. This study reveals the fact that, in the present context, silver nanoparticles are one of the best available technologies in delaying the postharvest associated degradation in rose cut flowers.

Key words: Rose flower, Silver nanoparticles, Vase life, Water uptake, Relative fresh weight

INTRODUCTION

Discoveries in the past decade have shown that once materials are prepared in the form of very small particles, they change significantly their physical and chemical properties, sometimes to the extent that completely new phenomenon is established¹. There are some reliable reports in the literature that show encouraging reports about the activity of different drugs and antimicrobial formulations in the form of nanoparticles.

Cite this article: Amingad, V., Sreenivas, K.N., Fakrudin, B., Seetharamu, G.K., Shankarappa, T.H., Sangama and Venugopalan, R., Comparison of Silver Nanoparticles and Other Metal Nanoparticles on Postharvest Attributes and Bacterial Load in Cut Roses var. Taj Mahal, *Int. J. Pure App. Biosci.* **5**(6): 579-584 (2017). doi: http://dx.doi.org/10.18782/2320-7051.2610

Amingad et al

Previous studies have shown that antimicrobial formulations in the form of nanoparticles could be used as effective bactericidal materials². Due to the smaller size and larger surface area of metal nanoparticles, there is improved functionality of these metals along with the added benefit of getting easily absorbed and mobilized into the plant system. Rose (Rosa spp.) is one of the highest in demand cut flowers in the world and has a limited commercial value due to early dehydration³. The length of vase life is one of the important factors for quality of cut flowers. The main cause of abbreviated vase life in cut flowers is failure in water relations. Blockage of water conducting xylem vessels contributes to the short postharvest life of many cut flowers⁴. Numerous investigations have demonstrated the helpful effects of various chemical additives on the postharvest water relations and extending the vase life of cut rose flowers⁵. Stem blockage might be microbial or physiological⁶. Silver nanoparticles have been effectively used as vase life enhancer and as a biocide in vase solutions⁷. Many metal nanoparticles too have shown some promise as anti-microbial agents⁸. Hence, a study was contemplated to compare these select metal nanoparticles with silver nanoparticles and explore possible positive influence on postharvest factors in cut roses var. Taj Mahal.

MATERIAL AND METHODS

The cut rose flower (Rosa x hybrida), 'Taj Mahal' were obtained from a commercial greenhouse at the outskirts of the city of Bengaluru, Karnataka, India. They were immediately transferred to the postharvest laboratory of the College of Horticulture, Bengaluru, a sub-campus of University of Horticultural Sciences, Bagalkot, India. Cut flowers were harvested in the morning between 7 am-8 am. Immediately after harvest, cut ends of the flowers were kept in a bucket containing water. These flowers were pre cooled at 2°C for four hours. After pre-cooling flowers were bunched and trimmed to 50-60 cm. These flowers were transported with their cut ends immersed in water to the laboratory which had average temperature of 25+ 2°C and 55 to 65 per cent relative humidity. The experiments were carried out the same day. The flower stems were re-cut under deionized water to a uniform length of 45 cm. Recutting was to ensure no air blockage of the stem end. Flower stems were places in glass bottles containing 100 ml of preservative solutions. The mouths of the bottles were then stuffed with non-absorption cotton so as to minimize evaporation loss and prevent contamination. Experiments were carried out in a Completely Randomized Design.

ti catments					
T ₁ :5 ppm Silver nano particle	T ₇ : 20 ppm Zinc nano particle				
T ₂ : 20 ppm Silver nano particle	T ₈ : 10 ppm Magnesium nano particle				
T ₃ : 50 ppm Silver nano particle	T ₉ : 20 ppm Magnesium nano particle				
T ₄ : 10 ppm Nano copper	T ₁₀ : 5 ppm Carbon nano tubes				
T ₅ : 20 ppm Nano copper	T ₁₁ : 10 ppm Carbon nano tubes				
T ₆ : 10 ppm Zinc nano particle	T ₁₂ : Control (De ionised water)				

Vase solutions were freshly prepared at the beginning of experiments. A solution contains the following treatments

Preparation of nanoparticle solutions:

The nanoparticles were added to distilled water at desired concentrations and placed in Ultrasonic Cleaner so as to facilitate quick and uniform dissolution.

Measurements: The rose flowers were considered senescent when showing at least one of the following symptoms of senescence: wilting of leaves or flowers, neck bending and **Copyright © Nov.-Dec., 2017; IJPAB** incomplete bud opening. Water uptake, transpiration loss and water balance were recorded daily by measuring weights of vases without flowers and of flowers separately.

a. Uptake of water (g/ cut flower)

Difference between consecutive weights of bottle plus solution gives uptake of water of cut flower and represented in grams. **b.** Transpiration loss of water (g/ cut flower) Difference between consecutive weights of bottle plus solution plus cut flower gives transpiration loss of water of cut flower and expressed in grams.

c. Water balance (g/ cut flower)

Water balance of cut flower was calculated by using the formula given below.

Water balance = Water uptake – Transpiration loss of water

d. Bacterial count: Bacterial count was carried out using dilution plate technique. The number of bacteria was counted by the standard plate counting method to determine the number of colony forming units per ml (CFU ml)⁹.

RESULTS AND DISCUSSION

In the current study different metal nanoparticle solutions were compared with nano-silver (NS). Significant differences were found various treatments in extending the vase life of rose flowers.

3.1 Uptake of water (g/cut flower)

Significant differences were found among the treatments with respect to water uptake (table 2). Flowers held in solution containing SNP 20 ppm improved water uptake compared to others. The rate of decrease reflected the freshness retention of the cut flowers under each treatment. With progression of days, there was reduction in water uptake by the cut flowers. Silver nanoparticles, 50 ppm, effectively suppressed the reduction in fresh weight followed by treatment T_2 (SNP, 20 ppm). On the contrary, flowers held in deionized water (control) exhibited the sharpest decline in the water uptake values wilted earlier compared to the other treatments. Silver nanoparticles (SNP) may have had a positive influence on the water uptake because antibacterial effects of Ag+ ions in SNP may affect regulation of water channel activity via inhibition of sulfhydrylcontaining proteins of bacteria and improve solution uptake¹⁰. Silver being a cation enhances solution and water flow through xylem vessels¹¹. Better vase water uptake values were associated with suppression of bacterial growth in both vase water and stemend delaying stem blockage of *Acacia holosericea* foliage¹².

3.2 Transpiration loss of water (g/cut flower)

The lowest transpirational loss in water (table 2) was seen in the flowers held in plain distilled water. Flowers held in the treatment T_3 (SNP, 50 ppm) exhibited the highest transpirational water loss in all the days, but the flowers lasted till the end of the study Water deficit has direct effect on period. turgor of cut flowers, which accelerates The wilting and senescence. higher transpiration loss of water reflected better water uptake status, hence better freshness and vitality. The higher water uptake might be due to higher TLW to avoid temporary water stress. Silver ions enhanced water uptake due to microbe free conducting tissues and also delaying senescence by inhibiting ethylene generation. Minimum TLW in control was due to reduced water uptake¹³.

3.3 Water balance (g/cut flower)

Water balance in the cut flowers held in vase water is an indicator to decide about the longevity of the cut flowers in vase. Flowers held in distilled water (T_{12}) showed water balance values (0.50) of less than one on third day itself indicating that the flowers experienced higher water loss compared to the rest treatments (table 3). On the other hand, flowers held in silver nanoparticle solutions exhibited better water balance values. Treatments T_3 (SNP, 50 ppm) and T_2 (SNP, 20 ppm) were successful in maintaining water balance values (1.11 and 1.20 respectively) up to fourth day of vase period. Water deficit may develop only when the rate of water uptake is lower than the rate of transpiration, and a high rate of transpiration disrupts the water balance, which may then shorten the vase life of cut roses. Stomatal conductance and transpiration rate of the cut roses were found to be decreased by NS treatments, probably due to stomatal closure induced by NS (nano silver)¹⁴.

Amingad et al Int. J. Pure App. Biosci.	5 (6): 579-584 (2017) ISSN: 2320 – 7051
4.1.8 Microbial load (CFU)	negative bacteria Escherichia coli ¹⁷ . Vascular
The lowest bacterial count (fig. 1) was recorded with vase solution containing 50 ppm SNP (T_3) followed by the treatment T_6 (ZnONPs, 10 ppm). Silver nanoparticles decreased the bacterial population of rose var.	occlusion has been considered to be mainly due to microbial proliferation ¹⁸ . Efficacy of nanometer sized particles bearing Ag ⁺ as an antibactericidal agent (NS) is well established ¹⁹ . Antibacterial activity of NS is
Taj Mahal cut flowers, as they are very effective antimicrobial agents and consequently prevented the occlusion of xylem vessels. Similar results were reported in rose ^{14,15 and 16} . Zinc nanoparticles too have been reported to have antibacterial effects on gram-	partly a function of particle size, with higher surface to volume ratio increasing the proportion of atoms at the grain boundary ²⁰ . Nano silver pulse treatment inhibited bacterial growth for the first 2 days of vase life in stem ends of cut gerberas ⁷ .

 Table 1: Effect of nanoparticles holding solution on uptake of water (g) during vase period of cut flowers of rose var. Taj Mahal

	Uptake of Water						
	2 DAYS	3 DAYS	4 DAYS	5 DAYS	6 DAYS	7 DAYS	CWU
T1: Silver nanoparticles, 5 ppm	13.67	14.00	13.33	11.33	10.67	10.67	73.67
T2: Silver nanoparticles, 20 ppm	13.67	13.17	13.33	12.13	11.20	10.00	73.51
T3: Silver nanoparticles, 50 ppm	15.17	16.81	15.98	13.67	11.33	11.41	84.37
T4: Nano copper, 10 ppm	13.83	14.50	13.67	9.00	8.33	-	59.33
T5: Nano copper, 20 ppm	12.97	12.33	12.00	9.33	8.63	7.67	62.93
T6: Zinc nanoparticles, 10 ppm	15.07	17.33	14.67	12.00	11.67	9.00	79.73
T7: Zinc nanoparticles, 20 ppm	11.17	12.00	11.67	11.00	9.67	-	55.50
T8: MgO nanoparticles, 10 ppm	15.00	13.00	12.67	12.00	11.33	9.00	73.00
T9: MgO nanoparticles, 20 ppm	13.67	14.36	15.67	15.33	12.00	-	71.02
T10: Carbon nano tubes, 5 ppm	15.50	18.00	17.05	15.11	10.00	8.50	84.16
T11: Carbon nano tubes, 10	14.50	15.27	15 33	14.67	12.67	_	72 44
ррт	14.50	15.27	15.55	14.07	12.07	_	72.44
T12: Control	14.53	17.32	15.33	14.30	11.44	-	72.92
SEm	0.67	2.31	1.61	0.96	0.81	0.36	0.5270
CD 1%	2.94	10.15	7.06	4.22	3.57	1.58	2.31
Significance	**	NS	NS	**	*	**	**

 Table 2: Effect of nanoparticles holding solution on transpiration loss of water (g) of flowers during vase period of cut flowers of rose var. Taj Mahal

	Transpiration Loss of Water						
	2 DAYS	3 DAYS	4 DAYS	5 DAYS	6 DAYS	7 DAYS	CTL
T1: Silver nanoparticles, 5 ppm	16.00	20.33	16.00	12.67	10.33	8.55	83.88
T2: Silver nanoparticles, 20 ppm	12.67	14.33	15.00	12.37	11.33	9.17	74.86
T3: Silver nanoparticles, 50 ppm	14.83	17.22	18.67	12.91	11.65	9.31	84.60
T4: Nano copper, 10 ppm	12.67	15.67	17.67	10.01	7.67	-	63.67
T5: Nano copper, 20 ppm	11.33	13.87	9.33	10.21	9.62	7.86	62.22
T6: Zinc nanoparticles, 10 ppm	10.83	12.34	11.00	11.60	10.70	8.83	65.31
T7: Zinc nanoparticles, 20 ppm	11.83	12.33	13.00	15.41	10.56	-	63.14
T8: MgO nanoparticles, 10 ppm	15.00	17.85	16.00	14.90	11.34	8.97	84.06
T9: MgO nanoparticles, 20 ppm	16.17	19.69	16.00	14.67	12.33	-	78.86
T10: Carbon nano tubes, 5 ppm	17.77	19.16	20.03	16.62	12.97	-	86.56
T11: Carbon nano tubes, 10 ppm	14.17	15.73	13.00	11.34	9.67	-	63.90
T12: Control	9.60	7.90	7.05	6.17	5.00	-	35.71
SEm	1.6600	1.6550	3.1806	0.46	2.1487	0.2194	12.96
CD 1%	7.29	7.27	13.97	2.04	9.44	0.96	56.93
Significance	*	**	NS	**	NS	**	NS

Amingad *et al*

Int. J. Pure App. Biosci. 5 (6): 579-584 (2017)

 Table 3: Effect of nanoparticles holding solution on water balance (g) of flowers during vase period of cut flowers of rose var. Taj Mahal

	Water Balance (g)						
	2 DAYS	3 DAYS	4 DAYS	5 DAYS	6 DAYS	7 DAYS	
T1: Silver nanoparticles, 5 ppm	1.57	1.32	1.00	-0.39	-0.82	-1.27	
T2: Silver nanoparticles, 20 ppm	1.83	1.63	1.20	0.11	-0.57	-1.05	
T3: Silver nanoparticles, 50 ppm	1.63	1.47	1.11	0.14	-0.40	-1.03	
T4: Nano copper, 10 ppm	1.33	1.17	0.67	-1.33	-1.87	-2.23	
T5: Nano copper, 20 ppm	1.33	1.20	0.75	-1.10	-1.77	-2.42	
T6: Zinc nanoparticles, 10 ppm	1.67	1.20	0.86	-0.93	-1.21	-2.08	
T7: Zinc nanoparticles, 20 ppm	1.83	1.27	0.95	-0.96	-1.20	-2.03	
T8: MgO nanoparticles, 10 ppm	1.50	1.00	0.58	-1.50	-2.13	-2.62	
T9: MgO nanoparticles, 20 ppm	1.77	1.12	0.65	-1.30	-2.27	-2.77	
T10: Carbon nano tubes, 5 ppm	1.50	1.00	0.27	-1.98	-2.33	-2.92	
T11: Carbon nano tubes, 10 ppm	1.67	1.00	0.17	-1.90	-2.70	-3.00	
T12: Control	1.70	0.50	-1.13	-2.73	-3.10	-	
SEm	0.31	0.09	0.06	0.06	0.16	0.07	
CD 1%	1.34	0.40	0.27	0.24	0.69	0.29	
Significance	NS	**	**	**	**	**	

Fig. 1: Effect of nanoparticle vase solution on bacterial count in vase solution during the vase period of rose var. Taj Mahal cut flowers

CONCLUSION

In conclusion, in 'Taj Mahal' roses, using vase holding solution containing silver nanoparticles significantly extended vase life compared to the few other metal nanoparticles included in the study. Mobility of nanoparticles in the plant system is comparatively faster and easier compared to conventionally available metal powders. From the study, it is evident that silver nanoparticles are one of the best available chemicals to counter postharvest senescence in cut flowers. It can also be noted that zinc and copper

nanoparticles too have shown considerable promise in maintaining postharvest attributes in roses. Concerted studies are further required to gain detailed insight into their probable roles.

REFERENCES

- Shah, M. A. and A. Tokeer, Principles of Nanoscience and Nanotechnology. New Delhi: Naroosa Publishing House (2010).
- Fresta, M., Puglisi, G., Giammona, G., Cavallaro, G., Micali, N., Furneri, P. M., Pefloxacine mesilate- and ofloxacin-

Int. J. Pure App. Biosci. 5 (6): 579-584 (2017)

Amingad et al

loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. *J. Pharm. Sci.*, **84**: 895–902 (1995).

- 3. van Doorn, W. G., Water relations of cut flowers. *Hort. Rev.*, **18**: 1-85 (1997).
- Jedrzejuk, A. and J. Zakrzewski, Xylem occlusions in the stems of common lilac during postharvest life. *Acta Physiol. Planta.*, **31(6)**: 1147–1153 (2009).
- 5. Ichimura, K. and Shimuzu, H., Extension of the vase life of cut rose by treatment with sucrose before and during simulated transport. *Bulletin of the National Institute of Floricultural Science*, **7**: 17–27.
- Louband, M. and Van Doorn, W. G., 2004. Wound-induced and bacteriainduced xylem blockage in rose, Astilbe, and Viburnum. *Postharvest Biol. Technol.*, 32: 281-288 (2004).
- Liu Jiping, Shenggen He, Zhaoqi Zhang, Jinping Cao, Peitao, L. V., Sudan, H. E., Cheng, G. and Joyce C, D., Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. *Postharvest Biol. Technol.*, 54: 59–62 (2009).
- Rana, S. and Kalaichelvan, P. T., Antibacterial effect of metal nanoparticles. *Advanced Biotech.*, **11(2)**: 21-23 (2011).
- Jowkar Mohammad Mahdi, Ahmad Khalighi, Mohsen Kafi and Nader Hassanzadeh, Nano silver application impact as vase solution biocide on postharvest microbial and physiological properties of 'Cherry Brandy' rose. J. Food Agri. Envt., 11(1): 1045-1050 (2013).
- Niemietz, C. M. and Tyerman, S. D., New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. *FEBS Lett.*, 531(3): 443–447 (2002).
- van Ieperen, W., U. van Meeteren and van Gelder A., Fluid ionic composition influences hydraulic conductance of xylem conduits. *J. Expt. Bot.*, **51**:769-776 (2000).
- 12. Liu Jiping, Kamani Ratnayake, Daryl c. Joyce, Shenggen He and Zhaoqi Zhang,

Effects of three different nano-silver formulations on cut *Acacia holosericea* vase life. *Postharvest Biol. Technol.*, **66**: 8–15 (2012).

- Balakrishna, H. V., R. T. Venkatesh and Muthappa, R. B. G., Postharvest physiology of cut tuberose as influenced by some metal salts. *Mysore J. Agril. Sci.*, 23: 344-348 (1989).
- 14. Lu, P., J. Cao, S. He, J. Liu, H. Li, G. Cheng, Y, Ding and Joyce, D. C., Nanosilver pulse treatments improve water relations of cut rose cv. Movie Star flowers. *Postharvest Biol. Technol.*, 57: 196-202 (2010).
- Hassan, F. A. S., Ali, E. F. and El-Deeb, B., Improvement of postharvest quality of cut rose cv. 'First Red' by biologically synthesized silver nanoparticles. *Sci. Hort.*, **179**: 340-348 (2014).
- Kader Abdel Hesham, H., Effects of nanosilver holding and pulse treatments, in comparison with traditional silver nitrate pulse on water relations and vase life and quality of the cut flowers of *Rosa hybrida* L. cv. 'Tineke. *World Appl. Sci. J.*, **20(1)**: 130-137 (2012).
- Paul, N., Syed, A., Vyawahare, P., Dakle, R. and Ghuge, B., Green approaches for synthesis of zinc nanoparticles and its antibacterial activity. *Int. Res. J. Pharm.*, 7(6): 99-102 (2016).
- van Doorn, W.G., Schurer, K. and De Witte, Y., Role of endogenous bacteria in vascular blockage of cut rose flowers. *J. Plant Physiol.*, **134**: 375-381 (1989).
- Morones J. R., Jose L. E., Alejandra, C., Katherine, H., Juan, B. K., Jose, T. R. and Miguel, J. Y., The bactericidal effect of silver nanoparticles. *Nanotechnol.*, 16: 2346–2353 (2005).
- Raffi, M., Hussain, F., Bhatti, Y.M., Akhter, J.I., Hameed, A. and Hasan, M. M., Antibacterial characterization of silver nanoparticles against *E. coli* ATCC-15224. *J. Mater. Sci. Technol.* 24: 192– 196 (2008).